Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
1.
Physiol Rep ; 12(5): e15970, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479999

RESUMO

The brain possesses intricate mechanisms for monitoring sodium (Na) levels in body fluids. During prolonged dehydration, the brain detects variations in body fluids and produces sensations of thirst and aversions to salty tastes. At the core of these processes Nax , the brain's Na sensor, exists. Specialized neural nuclei, namely the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), which lack the blood-brain barrier, play pivotal roles. Within the glia enveloping the neurons in these regions, Nax collaborates with Na+ /K+ -ATPase and glycolytic enzymes to drive glycolysis in response to elevated Na levels. Lactate released from these glia cells activates nearby inhibitory neurons. The SFO hosts distinct types of angiotensin II-sensitive neurons encoding thirst and salt appetite, respectively. During dehydration, Nax -activated inhibitory neurons suppress salt-appetite neuron's activity, whereas salt deficiency reduces thirst neuron's activity through cholecystokinin. Prolonged dehydration increases the Na sensitivity of Nax via increased endothelin expression in the SFO. So far, patients with essential hypernatremia have been reported to lose thirst and antidiuretic hormone release due to Nax -targeting autoantibodies. Inflammation in the SFO underlies the symptoms. Furthermore, Nax activation in the OVLT, driven by Na retention, stimulates the sympathetic nervous system via acid-sensing ion channels, contributing to a blood pressure elevation.


Assuntos
Sódio , Sede , Humanos , Sódio/metabolismo , Sede/fisiologia , Pressão Sanguínea , Apetite/fisiologia , Desidratação , Cloreto de Sódio/metabolismo , Encéfalo/metabolismo , Cloreto de Sódio na Dieta/metabolismo
2.
Am J Physiol Endocrinol Metab ; 326(5): E555-E566, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446637

RESUMO

Prenatal exposure to maternal diabetes has been recognized as a significant cardiovascular risk factor, increasing the susceptibility to the emergence of conditions such as high blood pressure, atherosclerosis, and heart disease in later stages of life. However, it is unclear if offspring exposed to diabetes in utero have worse vascular outcomes on a high-salt (HS) diet. To test the hypothesis that in utero exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, we treated adult male wild-type offspring (DM_Exp, 6 mo old) of diabetic Ins2+/C96Y mice (Akita mice) with HS (8% sodium chloride, 10 days) and analyzed endothelial function via wire myograph and cyclooxygenase (COX)-derived prostanoids pathway by ELISA, quantitative PCR, and immunochemistry. On a regular diet, DM_Exp mice did not manifest any vascular dysfunction, remodeling, or inflammation. However, HS increased aortic contractility to phenylephrine and induced endothelial dysfunction (analyzed by acetylcholine-induced endothelium-dependent relaxation), vascular hydrogen peroxide production, COX2 expression, and prostaglandin E2 (PGE2) overproduction. Interestingly, ex vivo antioxidant treatment (tempol) or COX1/2 (indomethacin) or COX2 (NS398) inhibitors improved or reverted the endothelial dysfunction in DM_Exp mice fed a HS diet. Finally, DM_Exp mice fed with HS exhibited greater circulating cytokines and chemokines accompanied by vascular inflammation. In summary, our findings indicate that prenatal exposure to maternal diabetes predisposes to HS-induced vascular dysfunction, primarily through the induction of oxidative stress and the generation of COX2-derived PGE2. This supports the concept that in utero exposure to maternal diabetes is a cardiovascular risk factor in adulthood.NEW & NOTEWORTHY Using a unique mouse model of prenatal exposure to maternal type 1 diabetes, our study demonstrates the novel observation that prenatal exposure to maternal diabetes results in a predisposition to high-salt (HS) dietary-induced vascular dysfunction and inflammation in adulthood. Mechanistically, we demonstrated that in utero exposure to maternal diabetes and HS intake induces vascular oxidative stress, cyclooxygenase-derived prostaglandin E2, and inflammation.


Assuntos
Diabetes Gestacional , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Masculino , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Prostaglandinas/metabolismo , Vasodilatação , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Diabetes Gestacional/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo
3.
Hypertension ; 81(5): 1167-1177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38497230

RESUMO

BACKGROUND: The mTOR (mechanistic target of rapamycin) is an essential regulator of fundamental biological processes. mTOR forms 2 distinct complexes, mTORC1 (mTOR complex 1) when it binds with RAPTOR (Regulatory-associated Protein of mTOR) and mTORC2 (mTOR complex 2) when it associates with RICTOR (Rapamycin-insesitive companion of mTOR). Due to the previous link between the mTOR pathway, aldosterone, and blood pressure (BP), we anticipated that variants in the mTOR complex might be associated with salt-sensitive BP. METHODS: BP and other parameters were assessed after a one-week liberal Na+ (200 mmol/d) and a one-week restricted Na+ (10 mmol/d) diet in 608 White subjects from the Hypertensive Pathotype cohort, single-nucleotide variants in MTOR, RPTOR, and RICTOR genes were obtained for candidate genes analyses. RESULTS: The analysis revealed a significant association between a single nucleotide variants within the RPTOR gene and BP. Individuals carrying the RPTOR rs9901846 homozygous risk allele (AA) and heterozygous risk allele (GA) exhibited a 5 mm Hg increase in systolic BP on a liberal diet compared with nonrisk allele individuals (GG), but only in women. This single nucleotide variants effect was more pronounced on the restricted diet and present in both sexes, with AA carriers having a 9 mm Hg increase and GA carriers having a 5 mm Hg increase in systolic BP compared with GG. Interestingly, there were no significant associations between MTOR or RICTOR gene variants and BP. CONCLUSIONS: The RPTOR gene variation is associated with elevated BP in White participants, regardless of salt intake, specifically in females.


Assuntos
Pressão Sanguínea , Hipertensão , Proteína Regulatória Associada a mTOR , Cloreto de Sódio na Dieta , Feminino , Humanos , Masculino , Proteínas de Transporte/genética , Hipertensão/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Nucleotídeos/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Sirolimo , Cloreto de Sódio na Dieta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , População Branca
4.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396773

RESUMO

Basic helix-loop-helix (bHLH) transcription factors extensively affect various physiological processes in plant metabolism, growth, and abiotic stress. However, the regulation mechanism of bHLH transcription factors in balancing anthocyanin biosynthesis and abiotic stress in sweet potato (Ipomoea batata (L.) Lam.) remains unclear. Previously, transcriptome analysis revealed the genes that were differentially expressed among the purple-fleshed sweet potato cultivar 'Jingshu 6' and its anthocyanin-rich mutant 'JS6-5'. Here, we selected one of these potential genes, IbMYC2, which belongs to the bHLH transcription factor family, for subsequent analyses. The expression of IbMYC2 in the JS6-5 storage roots is almost four-fold higher than Jingshu 6 and significantly induced by hydrogen peroxide (H2O2), methyl jasmonate (MeJA), NaCl, and polyethylene glycol (PEG)6000. Overexpression of IbMYC2 significantly enhances anthocyanin production and exhibits a certain antioxidant capacity, thereby improving salt and drought tolerance. In contrast, reducing IbMYC2 expression increases its susceptibility. Our data showed that IbMYC2 could elevate the expression of anthocyanin synthesis pathway genes by binding to IbCHI and IbDFR promoters. Additionally, overexpressing IbMYC2 activates genes encoding reactive oxygen species (ROS)-scavenging and proline synthesis enzymes under salt and drought conditions. Taken together, these results demonstrate that the IbMYC2 gene exercises a significant impact on crop quality and stress resistance.


Assuntos
Antocianinas , Ipomoea batatas , Antocianinas/metabolismo , Cloreto de Sódio/farmacologia , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Secas , Resistência à Seca , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Cloreto de Sódio na Dieta/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
5.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388483

RESUMO

Tolerance mechanisms to single abiotic stress events are being investigated in different plant species, but how plants deal with multiple stress factors occurring simultaneously is still poorly understood. Here, we introduce Salicornia europaea as a species with an extraordinary tolerance level to both flooding and high salt concentrations. Plants exposed to 0.5MNaCl (mimicking sea water concentrations) grew larger than plants not exposed to salt. Adding more salt reduced growth, but concentrations up to 2.5MNaCl were not lethal. Regular tidal flooding with salt water (0.5MNaCl) did not affect growth or chlorophyll fluorescence, whereas continuous flooding stopped growth while plants survived. Quantitative polymerase chain reaction (qPCR) analysis of plants exposed to 1% oxygen in air revealed induction of selected hypoxia responsive genes, but these genes were not induced during tidal flooding, suggesting that S. europaea did not experience hypoxic stress. Indeed, plants were able to transport oxygen into waterlogged soil. Interestingly, sequential exposure to salt and hypoxic air changed the expression of several but not all genes as compared to their expression upon hypoxia only, demonstrating the potential to use S . europaea to investigate signalling-crosstalk between tolerance reactions to multiple environmental perturbations.


Assuntos
Chenopodiaceae , Plantas Tolerantes a Sal , Plantas Tolerantes a Sal/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Oxigênio/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Hipóxia
6.
Curr Opin Nephrol Hypertens ; 33(2): 145-153, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180118

RESUMO

PURPOSE OF REVIEW: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular disease. Epithelial sodium channel (ENaC) plays a critical role in renal electrolyte and volume regulation and has been implicated in the pathogenesis of SSBP. This review describes recent advances regarding the role of ENaC-dependent inflammation in the development of SSBP. RECENT FINDINGS: We recently found that sodium enters dendritic cells via ENaC, a process regulated by serum/glucocorticoid-regulated kinase 1 and epoxyeicosatrienoic acid 14,15. Sodium entry activates NADPH oxidase, leading to the production of isolevuglandins (IsoLGs). IsoLGs adduct self-proteins to form neoantigens in dendritic cells that activate T cells and result in the release of cytokines promoting sodium retention, kidney damage, and endothelial dysfunction in SSBP. Additionally, we described a novel mechanistic pathway involving ENaC and IsoLG-dependent NLRP3 inflammasome activation. These findings hold promise for the development of novel diagnostic biomarkers and therapeutic options for SSBP. SUMMARY: The exact mechanisms underlying SSBP remain elusive. Recent advances in understanding the extrarenal role of ENaC have opened a new perspective, and further research efforts should focus on understanding the link between ENaC, inflammation, and SSBP.


Assuntos
Canais Epiteliais de Sódio , Hipertensão , Humanos , Canais Epiteliais de Sódio/metabolismo , Hipertensão/etiologia , Hipertensão/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Inflamação/metabolismo , Sódio/metabolismo , Células Dendríticas
7.
Kidney Int ; 105(2): 242-244, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245213

RESUMO

The renal medulla maintains salt and water balance and is prone to dysregulation because of high oxygen demand. Challenges in obtaining high-quality tissue have limited characterization of molecular programs regulating the medulla. Haug et al. leveraged gene expression, chromatin accessibility, long-range chromosomal interactions, and spatial transcriptomics to build a reference set of medullary tissue marker genes to define the medullary role in kidney function, exemplifying the strength and utility of multi-omic data integration.


Assuntos
Medula Renal , Multiômica , Medula Renal/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Equilíbrio Hidroeletrolítico
8.
J Hypertens ; 42(4): 672-684, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230612

RESUMO

OBJECTIVE: This study aimed to investigate the impact of dietary salt intake during normal pregnancy on maternal microvascular and macrovascular endothelium-dependent reactivity and oxidative stress level. MATERIALS AND METHODS: In this cross-sectional study, based on their 24-h urinary sodium excretion, pregnant women (37-40 weeks of gestation) were divided into three groups: normal salt (<5.75 g/day, N  = 12), high salt (5.75-10.25 g/day, N  = 36), and very high salt (VHS;>10.25 g/day, N  = 17). Forearm skin microvascular reactivity in response to vascular occlusion, local heating (LTH) and iontophoresis of acetylcholine (AChID), as well as brachial artery flow mediated dilation (FMD) were measured. Serum nitric oxide, endocan, 8-iso-prostaglandin F2α (8-iso-PGF2α), thiobarbituric acid reactive substances (TBARS), and ferric-reducing ability of plasma assay were measured as biomarkers of endothelial function/activation and oxidative stress. RESULTS: Brachial artery FMD, microvascular AChID, and LTH were significantly decreased in VHS compared with NS group, while LTH was also decreased in normal salt compared with high salt group. Nitric oxide was significantly decreased in both high salt and VHS groups compared with normal salt. Endocan, 8-iso-PGF2α, and TBARS were significantly increased in VHS compared with the normal salt group. CONCLUSION: High dietary salt intake is associated with decreased nitric oxide mediated endothelium-dependent vasodilation in peripheral microcirculation and macrocirculation of healthy pregnant women due to increased oxidative stress.


Assuntos
Óxido Nítrico , Vasodilatação , Humanos , Feminino , Gravidez , Óxido Nítrico/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Estudos Transversais , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Estresse Oxidativo , Endotélio Vascular/metabolismo , Acetilcolina
9.
Am J Physiol Renal Physiol ; 326(1): F95-F104, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916287

RESUMO

In the current study, we took advantage of the loss of protection from hypertension in SSCD247-/- rats to characterize the pathological effects of renal T-cells in isolation from the confounding effects of elevated renal perfusion pressure. Male SSCD247-/- and SSCD247+/+ littermates were fed 4.0% NaCl (high salt) diet to induce hypertension. Blood pressure was assessed continuously throughout the time course with radiotelemetry. Urine albumin and protein excretion were assessed on the final day of high salt. Renal injury and medullary transcriptome were assessed after completion of the high salt protocol. In contrast to previous studies, mean arterial pressure was not significantly different between SSCD247-/- and SSCD247+/+ rats. Despite this lack of pressure difference, urinary albumin was significantly lower in SSCD247-/- rats than their wild-type littermates. In the outer medulla, substantially more transcriptomic changes were found to correlate with endpoint blood pressure than with the absence of presence of renal T-cells. We also demonstrated that renal histological damage was driven by elevated renal perfusion pressure rather than the presence of renal T-cells. In conclusion, using the loss of protection from hypertension in SSCD247-/- rats, we demonstrated that renal perfusion pressure has more profound pathological effects on the kidney than renal T-cells. However, renal T-cells, independently of blood pressure, modulate the progression of albuminuria.NEW & NOTEWORTHY In vivo studies in a T-cell-deficient rat model of salt-sensitive hypertension (SSCD247-/- rats) were used to evaluate the role of T-cells on the development of hypertension and renal damage. Detailed physiological and transcriptomic analysis demonstrated no difference in blood pressure between rats with (SSCD247+/+) or without (SSCD247-/-) T-cells. Despite this, albuminuria was significantly lower in SSCD247-/- rats than SSCD247+/+ rats.


Assuntos
Hipertensão , Transcriptoma , Ratos , Masculino , Animais , Albuminúria/metabolismo , Linfócitos T/metabolismo , Ratos Endogâmicos Dahl , Rim/metabolismo , Hipertensão/metabolismo , Pressão Sanguínea , Cloreto de Sódio na Dieta/metabolismo , Albuminas/metabolismo
10.
Am J Physiol Renal Physiol ; 326(2): F249-F256, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059297

RESUMO

Angiotensin II (ANG II) increases proximal tubule superoxide (O2-) production more in rats fed a 20% fructose normal-salt diet compared with rats fed a 20% glucose normal-salt diet. A 20% fructose high-salt diet (FHS) increases systolic blood pressure (SBP), whereas a 20% glucose high-salt diet (GHS) does not. However, it is unclear whether FHS enhances ANG II-induced oxidative stress in proximal tubules and whether this contributes to increases in blood pressure in this model. We hypothesized that FHS augments the ability of ANG II to stimulate O2- production by proximal tubules, and this contributes to fructose-induced salt-sensitive hypertension. We measured SBP in male Sprague-Dawley rats fed FHS and GHS and determined the effects of 3 mM tempol and 50 mg/kg losartan for 7 days. We then measured basal and ANG II-stimulated (3.7 × 10-8 M) O2- production by proximal tubule suspensions and the role of protein kinase C. FHS increased SBP by 27 ± 5 mmHg (n = 6, P < 0.006) but GHS did not. Rats fed FHS + tempol and GHS + tempol showed no significant increases in SBP. ANG II increased O2- production by 11 ± 1 relative light units/µg protein/s in proximal tubules from FHS-fed rats (n = 6, P < 0.05) but not in tubules from rats fed GHS. ANG II did not significantly stimulate O2- production by proximal tubules from rats fed FHS + tempol or FHS + losartan. The protein kinase C inhibitor Gö6976 blunted ANG II-stimulated O2- production. In conclusion, FHS enhances the sensitivity of proximal tubule O2- production to ANG II, and this contributes to fructose-induced salt-sensitive hypertension.NEW & NOTEWORTHY A diet containing amounts of fructose consumed by 17 million Americans causes salt-sensitive hypertension. Oxidative stress is an initiating cause of this model of fructose-induced salt-sensitive hypertension increasing blood pressure. This salt-sensitive hypertension is prevented by losartan and thus is angiotensin II (ANG II) dependent. Fructose-induced salt-sensitive hypertension depends on ANG II stimulating oxidative stress in the proximal tubule. A fructose/high-salt diet augments the ability of ANG II to stimulate proximal tubule O2- via protein kinase C.


Assuntos
Angiotensina II , Óxidos N-Cíclicos , Hipertensão , Marcadores de Spin , Humanos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Superóxidos/metabolismo , Losartan/farmacologia , Frutose/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Cloreto de Sódio/metabolismo , Néfrons/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Pressão Sanguínea , Proteína Quinase C/metabolismo , Glucose/farmacologia
11.
Hypertension ; 81(3): 447-455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37671571

RESUMO

Excess dietary salt (NaCl) intake is strongly correlated with cardiovascular disease and is a major contributing factor to the pathogenesis of hypertension. NaCl-sensitive hypertension is a multisystem disorder that involves renal dysfunction, vascular abnormalities, and neurogenically-mediated increases in peripheral resistance. Despite a major research focus on organ systems and these effector mechanisms causing NaCl-induced increases in arterial blood pressure, relatively less research has been directed at elucidating how NaCl is sensed by various tissues to elicit these downstream effects. The purpose of this review is to discuss how the brain, kidney, and gastrointestinal tract sense NaCl including key cell types, the role of NaCl versus osmolality, and the underlying molecular and electrochemical mechanisms.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Pressão Sanguínea , Rim/metabolismo , Encéfalo/metabolismo
12.
Hypertension ; 81(3): 426-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675565

RESUMO

Salt sensitivity concerns blood pressure alterations after a change in salt intake (sodium chloride). The heart is a pump, and vessels are tubes; sodium can affect both. A high salt intake increases cardiac output, promotes vascular dysfunction and capillary rarefaction, and chronically leads to increased systemic vascular resistance. More recent findings suggest that sodium also acts as an important second messenger regulating energy metabolism and cellular functions. Besides endothelial cells and fibroblasts, sodium also affects innate and adaptive immunometabolism, immune cell function, and influences certain microbes and microbiota-derived metabolites. We propose the idea that the definition of salt sensitivity should be expanded beyond high blood pressure to cellular and molecular salt sensitivity.


Assuntos
Hipertensão , Sódio , Humanos , Sódio/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Células Endoteliais/metabolismo , Cloreto de Sódio , Pressão Sanguínea/fisiologia
13.
Hypertension ; 81(3): 516-529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37675576

RESUMO

BACKGROUND: The mechanisms by which salt increases blood pressure in people with salt sensitivity remain unclear. Our previous studies found that high sodium enters antigen-presenting cells (APCs) via the epithelial sodium channel and leads to the production of isolevuglandins and hypertension. In the current mechanistic clinical study, we hypothesized that epithelial sodium channel-dependent isolevuglandin-adduct formation in APCs is regulated by epoxyeicosatrienoic acids (EETs) and leads to salt-sensitive hypertension in humans. METHODS: Salt sensitivity was assessed in 19 hypertensive subjects using an inpatient salt loading and depletion protocol. Isolevuglandin-adduct accumulation in APCs was analyzed using flow cytometry. Gene expression in APCs was analyzed using cellular indexing of transcriptomes and epitopes by sequencing analysis of blood mononuclear cells. Plasma and urine EETs were measured using liquid chromatography-mass spectrometry. RESULTS: Baseline isolevuglandin+ APCs correlated with higher salt-sensitivity index. Isolevuglandin+ APCs significantly decreased from salt loading to depletion with an increasing salt-sensitivity index. We observed that human APCs express the epithelial sodium channel δ subunit, SGK1 (salt-sensing kinase serum/glucocorticoid kinase 1), and cytochrome P450 2S1. We found a direct correlation between baseline urinary 14,15 EET and salt-sensitivity index, whereas changes in urinary 14,15 EET negatively correlated with isolevuglandin+ monocytes from salt loading to depletion. Coincubation with 14,15 EET inhibited high-salt-induced increase in isolevuglandin+ APC. CONCLUSIONS: Isolevuglandin formation in APCs responds to acute changes in salt intake in salt-sensitive but not salt-resistant people with hypertension, and this may be regulated by renal 14,15 EET. Baseline levels of isolevuglandin+ APCs or urinary 14,15 EET may provide diagnostic tools for salt sensitivity without a protocol of salt loading.


Assuntos
Hipertensão , Lipídeos , Cloreto de Sódio na Dieta , Humanos , Cloreto de Sódio na Dieta/metabolismo , Canais Epiteliais de Sódio/metabolismo , Cloreto de Sódio/metabolismo , Eicosanoides , Pressão Sanguínea/fisiologia
14.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069178

RESUMO

We have previously shown that an excess of deoxycorticosterone acetate and high sodium chloride intake (DOCA/salt) in one-renin gene mice induces a high urinary Na/K ratio, hypokalemia, and cardiac and renal hypertrophy in the absence of hypertension. Dietary potassium supplementation prevents DOCA/salt-induced pathological processes. In the present study, we further study whether DOCA/salt-treated mice progressively develop chronic inflammation and fibrosis in the kidney and whether dietary potassium supplementation can reduce the DOCA/salt-induced renal pathological process. Results showed that (1) long-term DOCA/salt-treated one-renin gene mice developed severe kidney injuries including tubular/vascular hypertrophy, mesangial/interstitial/perivascular fibrosis, inflammation (lymphocyte's immigration), proteinuria, and high serum creatinine in the absence of hypertension; (2) there were over-expressed mRNAs of plasminogen activator inhibitor-1 (PAI-1), fibronectin, collagen type I and III, interferon-inducible protein-10 (IP-10), monocyte chemotactic protein-1 (MCP1), transforming growth factor-ß (TGF-ß), tumor necrosis factor-alpha (TNF-α), osteopontin, Nuclear factor kappa B (NF-κB)/P65, and intercellular adhesion molecule (ICAM)-1; and (3) dietary potassium supplementation normalized urinary Na/K ratio, hypokalemia, proteinuria, and serum creatinine, reduced renal hypertrophy, inflammations, and fibrosis, and down-regulated mRNA expression of fibronectin, Col-I and III, TGF-ß, TNF-α, osteopontin, and ICAM without changes in the blood pressure. The results provide new evidence that potassium and sodium may modulate proinflammatory and fibrotic genes, leading to chronic renal lesions independent of blood pressure.


Assuntos
Acetato de Desoxicorticosterona , Glomerulonefrite , Hipertensão , Hipopotassemia , Camundongos , Animais , Pressão Sanguínea , Cloreto de Sódio/metabolismo , Fibronectinas/metabolismo , Osteopontina/metabolismo , Potássio na Dieta/metabolismo , Acetato de Desoxicorticosterona/efeitos adversos , Cloretos/metabolismo , Renina/metabolismo , Hipopotassemia/patologia , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/metabolismo , Hipertensão/metabolismo , Rim/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Glomerulonefrite/patologia , Inflamação/metabolismo , Suplementos Nutricionais , Fator de Crescimento Transformador beta/metabolismo , Proteinúria/metabolismo , Hipertrofia/metabolismo , Fibrose , Acetatos/metabolismo
15.
J Pharmacol Exp Ther ; 387(3): 299-305, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37857438

RESUMO

Cardiovascular disease, chronic kidney disease, and anemia are known to adversely affect each other. Inflammation is commonly involved in these diseases. Cardiorenal anemia syndrome (CRAS) is the name given to this mutually harmful condition. Dimethyl fumarate (DMF) is a Food and Drug Administration-approved antioxidant and anti-inflammatory agent. The purpose of this study was to investigate the effects of DMF on Dahl/salt-sensitive (DS) rats as a CRAS model. Six-week-old DS rats were divided into three groups: the control group, the high-salt (HS) group, and the HS+DMF group. The HS and HS+DMF groups were fed a high-salt diet (8% NaCl) from 6 weeks of age. In the HS+DMF group, DMF (90 mg/kg per day) was orally administered from 6 to 15 weeks of age. Systolic blood pressure was measured every 2 weeks. The heart and renal injuries were assessed with histopathological analysis. The heart and renal expression of mRNAs was assessed by reverse-transcription polymerase chain reaction. DMF significantly improved overall survival, which was shortened by HS in DS rats. Systolic blood pressure increased in the HS group compared with the control group, and DMF tended to suppress this change. DMF ameliorated the cardiac and renal abnormalities confirmed in the HS group by histopathological analysis. Furthermore, the changes in mRNA expressions associated with disease exacerbation in the HS group were suppressed by DMF. DMF also improved anemia. This study suggests that DMF improves overall survival in DS rats through organ-protective effects and is effective against cardiorenal anemia syndrome. SIGNIFICANCE STATEMENT: Dimethyl fumarate was found to improve overall survival in Dahl/salt-sensitive rats, associated with its ability to ameliorate anemia and induce cardioprotective and renoprotective effects through anti-inflammatory and antifibrotic effects.


Assuntos
Síndrome Cardiorrenal , Hipertensão , Animais , Ratos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Fumarato de Dimetilo/metabolismo , Ratos Endogâmicos Dahl , Rim , Pressão Sanguínea , Cloreto de Sódio na Dieta/metabolismo , Síndrome Cardiorrenal/tratamento farmacológico
16.
Sci Total Environ ; 904: 166800, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673269

RESUMO

A 6-week trial was designed to investigate the effects of dietary sodium chloride supplementation on physiological, metabolic, and molecular stress response parameters. The findings showed that (1) there were no significant differences between sodium chloride supplementation groups (0.05S, 0.1S, and 0.15S) and the control group (P > 0.05), except for the 0.2S diet, which showed better final body weight, weight gain rate, specific growth rate, and feed conversion ratio than the control group (P < 0.05). (2) The hypothermic stress experiment results showed that the survival rates in the 0.1S and 0.15S diets were significantly higher than the control group (P < 0.05). (3) Transcription results showed that these enriched pathways in the gill were mainly energy metabolism and apoptosis pathways, while the major enrichment pathways in the liver were mainly amino acid metabolism and carbohydrate metabolism. (4) The plasma parameter results showed, compared to the control group, the 0.15S diet significantly increased the plasma GLU, TG contents, and Na+ and K+ concentrations and decreased the plasma ALT activity (P < 0.05). In addition, the 0.1S diet increased the plasma ALB content and Cl- concentration (P < 0.05). The gill Na+/K+-ATPase activity decreased markedly when the fish were fed the 0.1S and 0.15S diets (P < 0.05). The antioxidant enzyme activity results showed that the 0.1S and 0.15S diets significantly increased the T-SOD activities (P < 0.05). Gene expression results showed that compared to the control group, the 0.1S and 0.15S diets up-regulated the expression of gys, hsp70, mlcp, mlc, myosin, tnt mRNA, and down-regulated the akt, gk, and erk mRNA expression. Based on the regression analysis, the optimum dietary sodium chloride levels range from 0.10 % to 0.13 % of the diet, which could facilitate energy regulation, improve the immune response, and ultimately strengthen the cold resistance of GIFT.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/genética , Tilápia/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Dieta/veterinária , Antioxidantes/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Ração Animal/análise , Suplementos Nutricionais/análise
17.
Hypertens Res ; 46(10): 2356-2367, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532951

RESUMO

Recent studies have focused on the contribution of vascular endothelial transient receptor potential vanilloid 4 (TRPV4) channels to hypertension. However, in hypertension, TRPV4 channels in vascular smooth muscle remain unexplored. In the present study, we performed wire myograph experiments in isolated aortas from endothelial cell specific TRPV4 channel knockout (TRPV4EC-/-) mice to demonstrate that GSK1016790A (a specific TRPV4 channel agonist) triggered aortic smooth muscle-dependent contractions from mice on a normal-salt diet, and the contractions were enhanced in high-salt diet (HSD) mice. Intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ imaging assays showed that TRPV4-induced [Ca2+]i was significantly higher in aortic smooth muscle cells (ASMCs) from HSD-induced hypertensive mice, and application of an inositol trisphosphate receptor (IP3R) inhibitor markedly attenuated TRPV4-induced [Ca2+]i. IP3R2 expression was enhanced in ASMCs from HSD-induced hypertensive mice and the contractile response induced by TRPV4 was inhibited by the IP3R inhibitor. Whole-transcriptome analysis by RNA-seq and western blot assays revealed the involvement of interferon regulatory factor 7 (IRF7) in TRPV4-IRF7-IP3R2 signaling in HSD-induced hypertension. These results suggested that TRPV4 channels regulate smooth muscle-dependent contractions in high salt-induced hypertension, and this contraction involves increased [Ca2+]i, IP3R2, and IRF7 activity. Our study revealed a considerable effect of TRPV4 channels in smooth muscle-dependent contraction in mice during high-salt induced hypertension.


Assuntos
Aorta , Hipertensão , Canais de Cátion TRPV , Canais de Potencial de Receptor Transitório , Animais , Camundongos , Aorta/citologia , Aorta/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Cloreto de Sódio , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/farmacologia , Vasoconstrição
18.
Function (Oxf) ; 4(5): zqad031, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575482

RESUMO

In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.


Assuntos
Cloreto de Sódio na Dieta , Cloreto de Sódio , Ratos , Animais , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta/metabolismo , Cloreto de Sódio/metabolismo , Pressão Sanguínea , Rim , RNA Mensageiro
19.
Curr Opin Nephrol Hypertens ; 32(5): 451-457, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37530086

RESUMO

PURPOSE OF REVIEW: Regulation of the sodium chloride cotransporter (NCC) in the distal convoluted tubule (DCT) plays a crucial role in renal salt handling. The calcium-sensing receptor (CaSR) has been shown to activate NCC through the WNK4-SPAK pathway, which is independent of the Renin-Angiotensin-Aldosterone system. In this review, we examine new information about the mechanism of how the CaSR regulates NCC through the WNK4-SPAK pathway and its physiological and therapeutic implications. RECENT FINDINGS: The activation of CaSR in TALH cells during hypercalcemia inhibits NKCC2 and ROMK activity, reducing paracellular Ca2+ reabsorption but decreasing salt reabsorption. This pathway enables NaCl reabsorption in the DCT while promoting Ca2+ excretion. CaSR activation in the apical DCT stimulates a signaling pathway involving PKC, WNK4, and SPAK, which increases NCC activation to recover the NaCl not reabsorbed in TAHL. Glucose or fructose acting as calcimimetics enhance apical CaSR sensitivity, increasing NCC activity, which contribute to the mechanism of hypertension prevalence in diabetic patients or in those with high fructose consumption. SUMMARY: These findings reveal the importance of the CaSR-mediated activation of the WNK4-SPAK pathway in regulating salt and calcium homeostasis and its potential as a therapeutic target for hypertension and related diseases.


Assuntos
Hipertensão , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Fosforilação , Cloreto de Sódio/metabolismo , Cálcio/metabolismo , Túbulos Renais Distais/metabolismo , Hipertensão/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
20.
Kidney360 ; 4(8): 1181-1187, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37424061

RESUMO

It has been estimated that over a fifth of deaths worldwide can be attributed to dietary risk factors. A particularly serious condition is salt-sensitive (SS) hypertension and renal damage, participants of which demonstrate increased morbidity and mortality. Notably, a large amount of evidence from humans and animals has demonstrated that other components of the diet can also modulate hypertension and associated end-organ damage. Evidence presented in this review provides support for the view that immunity and inflammation serve to amplify the development of SS hypertension and leads to malignant disease accompanied by tissue damage. Interestingly, SS hypertension is modulated by changes in dietary protein intake, which also influences immune mechanisms. Together, the evidence presented in this review from animal and human studies indicates that changes in dietary protein source have profound effects on the gut microbiota, microbiota-derived metabolites, gene expression, immune cell activation, the production of cytokines and other factors, and the development of SS hypertension and kidney damage.


Assuntos
Hipertensão , Nefropatias , Animais , Humanos , Proteínas na Dieta/efeitos adversos , Proteínas na Dieta/metabolismo , Pressão Sanguínea/fisiologia , Nefropatias/etiologia , Hipertensão/etiologia , Rim/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Cloreto de Sódio na Dieta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...